ESP and Fabric Filter Considerations for Meeting Environmental Regulations: IED, LCP and WI BREF

Theme: 8 - Combustion and Steam Plant Technology
Session: 7 - Reducing Emissions in Flue Gases

Jeffrey Shellenberger, Aaron Benedict, Robert Giglio
Amec Foster Wheeler North America Corp.
Introduction

Current & Pending Environmental Regulations

<table>
<thead>
<tr>
<th>Major Regulation</th>
<th>PM Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrial Emissions Directive (IED)</td>
<td>10 – 20 mg/Nm³ (dry, 6% O₂)</td>
</tr>
<tr>
<td>BAT (Best Available Techniques) Reference Document (BREF) for Large Combustion Plants (LCP)¹</td>
<td>2 – 16 mg/Nm³ (dry, 6% O₂)</td>
</tr>
<tr>
<td>BAT (Best Available Techniques) Reference Document (BREF) for Waste Incineration (WI)¹</td>
<td>1 – 20 mg/Nm³ (dry, 11% O₂)</td>
</tr>
</tbody>
</table>

1. Preliminary draft

Options for Compliance:

- Upgrade existing equipment
- Install new equipment
- Combination of technologies
Particulate matter (PM) control is central to any multi-component AQCS:

PM control technology selection will affect the approach to mercury and other acid gases. Co-benefits:
- Hg capture in particulate form
- Hg absorbed and collected with powdered activated carbon
- Acid gas control by collecting dry flue gas desulfurization (FGD) sorbents
Choosing the Best Combination of Technology
Cost & Schedule

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSI & ACI with Existing PM Control</td>
<td>Low Capital Investment</td>
</tr>
<tr>
<td></td>
<td>Minimal Footprint Impact</td>
</tr>
<tr>
<td>Add-On / Upgrade PM Control Device + DSI & ACI</td>
<td>Upgrade or Replace Aging ESP</td>
</tr>
<tr>
<td></td>
<td>Polishing FF Downstream of ESP</td>
</tr>
<tr>
<td></td>
<td>Improved PM Collection & Sorbent Consumption</td>
</tr>
<tr>
<td>Add-On / Dry FGD System</td>
<td>Improved Acid Gas Control</td>
</tr>
<tr>
<td></td>
<td>Decreased Sorbent Consumption</td>
</tr>
<tr>
<td></td>
<td>Dry Disposal</td>
</tr>
<tr>
<td>Add-On Wet FGD System</td>
<td>Typically Multi-Product AQCS Train</td>
</tr>
<tr>
<td></td>
<td>High Acid Gas Control</td>
</tr>
<tr>
<td></td>
<td>Gypsum Byproduct</td>
</tr>
</tbody>
</table>

Increased Cost & Schedule
Electrostatic Precipitator (ESP) Design Considerations

► Advantages:
 ► Can operate at high temperature
 ► Better suited for sticky fly ash
 ► Low maintenance
 ► Low pressure drop

► Disadvantages:
 ► Sensitive to fly ash resistivity
 ► High power consumption
 ► Uneconomic below 10 mg/Nm³

Hammer Rapped Rigid Discharge Electrode (HaRDE) Dry ESP
Electrostatic Precipitator (ESP) Design Considerations

- Key Performance Considerations:
 - Specific collection area (SCA)
 - Flue gas velocity
 - ESP geometry / arrangement
 - Fly ash properties
 - Site-specific layout and construction constraints
- Equipment design
 - TR’s
 - Rapping
 - Electrodes

Variable Intensity Gravity Rapped (VIGR) Dry ESP
Electrostatic Precipitator (ESP) Upgrade Options

<table>
<thead>
<tr>
<th>Minor Upgrades Requires Minor Outage</th>
<th>Major Upgrades Requires Major Outage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-Ripple Power Supplies</td>
<td>Modernize Internals (Wide Plate Spacing, Wires to RDE’s)</td>
</tr>
<tr>
<td>Modernization of Control Scheme</td>
<td>Optimize Field Length / Additional Field</td>
</tr>
<tr>
<td>Increased Sectionalization</td>
<td>Increased Field Height</td>
</tr>
<tr>
<td>CFD Modeling / Flow Distribution</td>
<td>New ESP in Parallel / Series</td>
</tr>
<tr>
<td>Pre-Conditioning</td>
<td>New FF in Series or ESP-to-PJFF Conversion</td>
</tr>
</tbody>
</table>
Fabric Filter
Design Considerations

► Advantages:
 ► Low PM emissions
 ► Less dependent upon consistent operating parameters (wide fuel mix)
 ► Increased sorbent utilization
 ► Mercury (Hg)
 ► Acid gases (SO₂, HCl, HF, etc.)

► Disadvantages:
 ► Consumable filter bags
 ► High pressure drop
Fabric Filter Design Considerations

► Key Performance Considerations:
 ► Air-to-cloth ratio
 ► Filter bag material
 ► Pulse cleaning frequency
 ► Equipment design
 ► Pulse cleaning equipment (valves, headers, blow pipes)
 ► Gas flow distribution
 ► Controls

High Pressure Jet III Pulse Jet Fabric Filter (PJFF)
Fabric Filter Upgrade Options

<table>
<thead>
<tr>
<th>Minor Upgrades Requires Minor Outage</th>
<th>Major Upgrades Requires Major Outage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upgrade Filter Media</td>
<td>Change to Jet VIP Cleaning System to Reduce Cleaning Frequency</td>
</tr>
<tr>
<td>CFD Modeling / Flow Distribution</td>
<td>Increase Cloth Area (Increase Bag Length, Add Compartments, etc.)</td>
</tr>
<tr>
<td>Reduce Air In-Leakage</td>
<td>New Polishing FF in Series</td>
</tr>
</tbody>
</table>
Fabric Filter
Polishing FF Downstream of ESP

► High A/C Ratio:
 ▶ Lower costs than “full burden” FF

► Preserve ash sales from ESP

► Performance:
 ▶ Low PM emissions
 ▶ High utilization of ACI and DSI sorbents

► Special Considerations:
 ▶ Gas flow distribution
 ▶ Bag length

4 x 818 MW Coal-Fired Boilers – U.S.
Fabric Filter
ESP-to-PJFF Conversion

- Low-Cost Method to Realize Benefits of PJFF Technology

- Size and Condition of Existing Equipment Critical
 - ESP casing and hoppers
 - ID fan capacity

- Tie-In Outage:
 - Maximize ground assembly
 - Install in large pieces
Electrostatic Precipitator
Wet ESP

► Target pollutants:
 ► Sub-micron particulate
 ► Metals
 ► Condensed acids

► Final polishing device:
 ► Opacity reduction

► Retrofit potential:
 ► Small footprint
 ► Low pressure drop
 ► Minimal impact to water system

2 x 800 MW Coal-Fired Boiler – U.S.
Case Study
U.S. MATS Compliance

- City of Fremont, Nebraska
- Lon D. Wright Unit 8
- 90 MW (gross) PC boiler
- Powder River Basin (PRB) coal

<table>
<thead>
<tr>
<th>Pollutant</th>
<th>Emissions1</th>
<th>MATS Limits1</th>
</tr>
</thead>
<tbody>
<tr>
<td>SO$_2$</td>
<td>1900 mg/Nm3</td>
<td>300 mg/Nm3</td>
</tr>
<tr>
<td>HCl</td>
<td>12.4 mg/Nm3</td>
<td>3.1 mg/Nm3</td>
</tr>
<tr>
<td>PM</td>
<td>250 mg/Nm3</td>
<td>47 mg/Nm3</td>
</tr>
<tr>
<td>Hg</td>
<td>16 μg/Nm3</td>
<td>1.9 μg/Nm3</td>
</tr>
</tbody>
</table>

1 Values are approximate. MATS regulatory units are lb/MMBtu
Case Study
U.S. MATS Compliance

Existing:
- Boiler
- Hot-Side ESP
- Stack

Retrofit:
- Activated Carbon Injection (ACI)
- Spray Dryer Absorber (SDA)
- Pulse Jet Fabric Filter (PJFF)
Case Study
U.S. MATS Compliance

► Start-up: Nov. 2015

► Emissions are within all MATS limits

► PJFF cleaning system has cleaned at a rate of approximately 7 – 24 pulses / bag / day:
 ► Depending on operating conditions of the upstream ESP (on vs. off)
 ► Very low cleaning frequency
 ► Will help extend filter bag life
Summary

► ESP’s and fabric filters are both proven and reliable technologies.

► Each technology has advantages, disadvantages, and a wide range of design considerations.

► Recent MATS and Boiler MACT project experience and lessons learned in the U.S. will provide a roadmap for success.
 ► Low level PM
 ► Mercury (Hg)
Questions?

jeffrey.shellenberger@amecfw.com